Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 253: 126678, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32278192

RESUMO

Hypoxia and petrogenic hydrocarbon contamination are two anthropogenic stressors that coexist in coastal environments. Although studies have estimated the impact of each stressor separately, few investigations have assessed the effects of these stressors in interaction. We therefore investigated the impact of these combined stressors on sea bass, (Dicentrarchus labrax) physiology. After experimental contamination with physically dispersed oil, fish were exposed to hypoxia or normoxia, and active/standard metabolic rates (AMR and SMR, respectively), and metabolic scope (MS) were estimated. At the protocol's end, the uptake of polycyclic aromatic hydrocarbons (PAHs) was estimated by evaluating relative concentrations of bile metabolites. In terms of bile metabolites, our results validated the uptake of PAHs by contaminated fish in our experimental settings, and further suggest that the hypoxic period after contamination does not reduce or increase compound metabolization processes. Our data showed significant effects of hypoxia on all metabolic rates: a significant drastic AMR reduction and significant SMR diminution led to decreased MS. We also found that oil contamination significantly impacted AMR and MS, but not SMR. These results suggested that when evaluated separately, hypoxia or oil affect the metabolic rate of sea bass. On the other hand, when evaluated in combination, no cumulative effects were observed, since fish exposed to both stressors did not show a stronger impact on metabolism than fish exposed to hypoxia alone. This suggests that oil impacts fish metabolism when fish occupy normoxic waters, and that oil does not magnify hypoxia-induced effects on fish metabolism.


Assuntos
Bass/fisiologia , Poluição por Petróleo , Aerobiose/efeitos dos fármacos , Animais , Bass/metabolismo , Bile/metabolismo , Hidrocarbonetos/metabolismo , Hipóxia/metabolismo , Hipóxia/veterinária , Hidrocarbonetos Policíclicos Aromáticos/metabolismo
2.
Sci Total Environ ; 693: 133469, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31635008

RESUMO

To make robust projectios of the impacts of climate change, it is critical to understand how abiotic factors may interact to constrain the distribution and productivity of marine flora and fauna. We evaluated the effects of projected end of the century ocean acidification (OA) and warming (OW) on the thermal tolerance of an important living marine resource, the sea urchin Loxechinus albus, a benthic shallow water coastal herbivore inhabiting part of the Pacific coast of South America. After exposing young juveniles for a 1-month period to contrasting pCO2 (~500 and 1400 µatm) and temperature (~15 °C and 20 °C) levels, critical thermal maximum (CTmax) and minimum (CTmin) as well as thermal tolerance polygons were assessed based on self-righting success as an end point. Transcription of heat shock protein 70 (HSP70), a chaperone protecting cellular proteins from environmental stress, was also measured. Exposure to elevated pCO2 significantly reduced thermal tolerance by increasing CTmin at both experimental temperatures and decreasing CTmax at 20 °C. There was also a strong synergistic effect of OA × OW on HSP70 transcription levels which were 75 times higher than in control conditions. If this species is unable to adapt to elevated pCO2 in the future, the reduction in thermal tolerance and HSP response suggests that near-future warming and OA will disrupt their performance and reduce their distribution with ecological and economic consequences. Given the wider latitudinal range (6 to 56°S) and environmental tolerance of L. albus compared to other members of this region's benthic invertebrate community, OW and OA may cause substantial changes to the coastal fauna along this geographical range.


Assuntos
Monitoramento Ambiental , Ouriços-do-Mar/fisiologia , Água do Mar/química , Estresse Fisiológico , Animais , Mudança Climática , Concentração de Íons de Hidrogênio , Invertebrados , Oceanos e Mares , América do Sul , Temperatura
3.
Environ Pollut ; 251: 581-590, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31108291

RESUMO

Hydrocarbons contamination and hypoxia are two stressors that can coexist in coastal ecosystems. At present, few studies evaluated the combined impact of these stressors on fish physiology and behavior. Here, we tested the effect of the combination of hypoxia and petrogenic hydrocarbons on the anti-predator locomotor performance of fish. Specifically, two groups of European sea bass (Dicentrarchus labrax) were exposed to clean water (Ctrl) or oil-contaminated water (Oil). Subsequently, fish of both groups were placed in normoxic (norx) or hypoxic (hyp) experimental tanks (i.e. four groups of fish were formed: Ctrl norx, Ctrl hyp, Oil norx, Oil hyp). In these tanks, escape response was elicited by a mechano-acoustic stimulus and recorded with a high speed camera. Several variables were analyzed: escape response duration, responsiveness (percentage of fish responding to the stimulation), latency (time taken by the fish to initiate a response), directionality (defined as away or toward the stimulus), distance-time variables (such as speed and acceleration), maneuverability variables (such as turning rate), escape trajectory (angle of flight) and distancing of the fish from the stimulus. Results revealed (i) effects of stressors (Ctrl hyp, Oil norx and Oil hyp) on the directionality; (ii) effects of Oil norx and Oil hyp on maneuverability and (iii) effects of Oil hyp on distancing. These results suggest that individual stressors could alter the escape response of fish and that their combination could strengthen these effects. Such an impact could decrease the probability of prey escape success. By investigating the effects of hydrocarbons (and the interaction with hypoxia) on the anti-predator behavior of fish, this work increases our understanding of the biological impact of oil spill. Additionally, the results of this study are of interest for oil spill impact evaluation and also for developing new ecotoxicological tools of ecological significance.


Assuntos
Bass/fisiologia , Reação de Fuga/efeitos dos fármacos , Hidrocarbonetos/toxicidade , Hipóxia/fisiopatologia , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Ecossistema , Oxigênio/análise , Oxigênio/metabolismo , Água do Mar/química
4.
Conserv Physiol ; 3(1): cou059, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27293680

RESUMO

Global increase in sea temperatures has been suggested to facilitate the incoming and spread of tropical invaders. The increasing success of these species may be related to their higher physiological performance compared with indigenous ones. Here, we determined the effect of temperature on the aerobic metabolic scope (MS) of two herbivorous fish species that occupy a similar ecological niche in the Mediterranean Sea: the native salema (Sarpa salpa) and the invasive marbled spinefoot (Siganus rivulatus). Our results demonstrate a large difference in the optimal temperature for aerobic scope between the salema (21.8°C) and the marbled spinefoot (29.1°C), highlighting the importance of temperature in determining the energy availability and, potentially, the distribution patterns of the two species. A modelling approach based on a present-day projection and a future scenario for oceanographic conditions was used to make predictions about the thermal habitat suitability (THS, an index based on the relationship between MS and temperature) of the two species, both at the basin level (the whole Mediterranean Sea) and at the regional level (the Sicilian Channel, a key area for the inflow of invasive species from the Eastern to the Western Mediterranean Sea). For the present-day projection, our basin-scale model shows higher THS of the marbled spinefoot than the salema in the Eastern compared with the Western Mediterranean Sea. However, by 2050, the THS of the marbled spinefoot is predicted to increase throughout the whole Mediterranean Sea, causing its westward expansion. Nevertheless, the regional-scale model suggests that the future thermal conditions of Western Sicily will remain relatively unsuitable for the invasive species and could act as a barrier for its spread westward. We suggest that metabolic scope can be used as a tool to evaluate the potential invasiveness of alien species and the resilience to global warming of native species.

5.
Biol Lett ; 8(6): 900-3, 2012 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22859560

RESUMO

At the end of May, 17 scientists involved in an EU COST Action on Conservation Physiology of Marine Fishes met in Oristano, Sardinia, to discuss how physiology can be better used in modelling tools to aid in management of marine ecosystems. Current modelling approaches incorporate physiology to different extents, ranging from no explicit consideration to detailed physiological mechanisms, and across scales from a single fish to global fishery resources. Biologists from different sub-disciplines are collaborating to rise to the challenge of projecting future changes in distribution and productivity, assessing risks for local populations, or predicting and mitigating the spread of invasive species.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais/métodos , Ecossistema , Peixes/fisiologia , Previsões , Espécies Introduzidas/tendências , Modelos Biológicos , Animais , Geografia , Oceanos e Mares , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...